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ABSTRACT
We present an automated approach for studying fine-grained
details of social interaction and relationships. Specifically,
we analyze the conversational characteristics of a group of
24 individuals over a six-month period, explore the relation-
ship between conversational dynamics and network position,
and identify behavioral correlates of tie strengths within a
network. The ability to study conversational dynamics and
social networks over long time scales, and to investigate their
interplay with rigor, objectivity, and transparency will com-
plement the traditional methods for scientific inquiry into so-
cial dynamics. They may also enable socially aware ubiqui-
tous computing systems that are cognizant of and responsive
to the user’s engagement with her social environment.
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INTRODUCTION
Most research on social networks is ultimately concerned
with face-to-face contact, which remains the primary mode
of social interaction [1]. However, direct observation of in-
teraction is difficult and expensive, and so has been applied
to small study populations over brief observation periods [6].
Researchers more often use indirect measures, such as sur-
vey self-reports [7], coattendance at events and comember-
ship in organizations [4], or contact traces such as calendar
appointments or e-mail headers [9]. In this study, we demon-
strate a method for automatically and directly collecting data
on face-to-face interaction over extended periods.
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Access to longitudinal face-to-face interaction data could
help address longstanding sociological questions such as:
How do global structural properties of the social network
relate to the local behavior that comprises the network ties?
For example, how does our network position affect how we
behave and how others behave toward us? Do we interact
differently within our close relationships? Behavioral mea-
sures of social interaction may also be used to understand
and improve traditional methods of data collection, such as
surveys.

Recent advances in wearable and ubiquitous computing con-
tinue to make gathering such real-world interaction data eas-
ier. Portable recording devices have grown in capacity while
becoming smaller, cheaper, and more powerful. But observ-
ing social behavior requires more than simple audio record-
ing capability. To collect data that captures truly natural in-
teractions, people must be recorded as they freely go about
their lives. Requiring such unconstrained recording gives
rise to two problems. First, uninvolved parties could be
recorded without their consent—a scenario that, if raw au-
dio is involved, is always unethical and often illegal. Sec-
ond, people may change their behavior if they know they are
being recorded. For both of those reasons, a level of privacy
must be maintained. Privacy-sensitive recording techniques
process incoming audio, preserving data useful for sociolog-
ical inquiry while discarding information deemed too inva-
sive. It is these recording techniques that necessitate ubiqui-
tous computing, and not simply ubiquitous recording.

In this paper, we show that it is possible, using only privacy-
sensitive techniques, to discover not only the link structure
of a social network but also interesting characteristics of the
social behavior within the network. We analyze the real
world interaction between 24 subjects over a period of 6
months, and make the following contributions:

1. Demonstrate the feasibility of fine-grained modeling of
social interaction and analysis of conversations through-
out the day from situated speech data.

2. Identify a relationship between speaking style and the
strength of social ties: a person changes his speaking style
more when talking to someone he speaks to infrequently.



Figure 1. The data collection kit worn by each subject.

3. Establish a link between speaking style and network po-
sition by discovering correlations between a person’s net-
work centrality and how much others deviate from their
normal speaking style in conversing with her.

We begin by describing the data collection and process-
ing system, present the experimental analysis and results,
and then conclude with discussion and description of future
work.

THE SOCIAL NETWORK DATASET
We have collected a social network corpus containing
sensor-derived measurements of conversations within a
group of 24 subjects. All were members of the incom-
ing graduate class (total size: 27) of a single department
at a large research university. Each subject wore a Multi-
Sensor Board (MSB) containing 8 different sensors useful
for detecting conversations, activities, and environmental
context: microphone, tri-axial accelerometer, infrared and
visible light, digital compass, temperature, barometric pres-
sure, and humidity. The MSB was connected to a PDA that
performed some processing of the sensor streams and stored
the resulting data on an SD card. As shown in Figure 1, the
PDA was carried in a small over-the-shoulder bag. The MSB
was clipped to the bag’s strap at the position of a lapel mic.
A complete description of the device can be found in [2].

Data were collected during working hours for one week per
month over the 9 month course of an academic year. For the
analysis in this paper, we consider only the 6 consecutive
months with the most time recorded (3,021 hours). Subjects
also submitted surveys at the end of each data collection
episode, reporting on their interactions with other partici-
pants during the previous month. Full accounts of the data
collection process, resulting corpus, and difficulties encoun-
tered along the way are in [15] and [8].

Privacy-sensitive speech processing
Most speech sounds can be modeled by two separate compo-
nents: (i) the source of sound generated by the vocal chords
and (ii) the filter (the vocal tract: mouth, nose, etc.) that
shapes the sound spectrum [10]. Prosodic aspects of speech

(intonation, stress, and duration) are described by how the
pitch and energy (volume) from the source change during
speech. The frequency response of the filter contains infor-
mation about the phonemes that are the basis for words. To
reproduce speech intelligibly, information on at least three
resonant peaks from the filter is required [3]. Audio process-
ing that removes information about these peaks practically
ensures that intelligible speech cannot be reconstructed. Our
privacy-sensitive recording technique extracts from the raw
audio a set of features that contain information about the
source and the prosodic content, but not about the formants.
It thus attains an intermediate level of privacy that prevents
the recording of the actual words being said, while preserv-
ing information about whether and how a person is speaking.

To evaluate our ability to detect conversations, we collected
50 minutes of data from 5 people who wore our recording
devices while moving around a building and entering and
leaving different conversations with one another. In that
data, the raw audio is saved in order to assess performance.
We find that we are able to detect conversations with ac-
curacy ranging from 96.1% to 99.2%. A full recounting
of that evaluation, along with a description of the features
and method we use for finding multi-person conversations
and inferring who was speaking in the conversations can be
found in [13].

For this paper we have added one post-processing technique
to our earlier method. Once conversations are identified, we
mark each participant who speaks for more than 0.5 seconds
as active for the preceding 20s and following minute. If a
participant is not marked as active at a given time, he is re-
moved from the conversation. This heuristic aims to remove
false positives where subjects are in the same physical loca-
tion but not actively conversing (e.g. working silently in the
same office, or attending a lecture).

We only detect conversations between participants wearing
a device. We cannot identify or even count any non-subjects
who speak with our subjects, so we cannot describe the full
set of interactions for any of our participants (such as those
with strangers, professors, or friends outside of school). We
focus only on analyzing interaction within a bounded net-
work of 24 students, not describing the individual ego net-
works of those 24 students.

Daily interaction patterns
Once we have extracted conversations from the sensor data,
we can begin building a picture of social interaction. Fig-
ure 2 shows histograms of the amount of speaking time
grouped into 5-minute bins from 9am to 9pm. The fig-
ure includes one histogram per weekday, aggregated across
all 6 monthly data collection episodes. These patterns re-
veal some rhythms of the week. For example, most partici-
pants were taking required graduate courses on Tuesday and
Thursday and the department frequently held special events
on those two afternoons. We notice more conversational ac-
tivities during lunchtime and Friday afternoons when the de-
partment’s weekly social event was scheduled.
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Figure 2. Histograms of person-seconds spent speaking.

SOCIAL NETWORK ANALYSIS: MICRO AND MACRO
We can also construct a network of face-to-face interaction
from the extracted conversations. For the purposes of this
paper, we estimate the network in the following manner: an
edge exists for a pair if both subjects participate in at least
20 seconds of conversation with each other.

Although we independently assessed the accuracy of con-
versation detection using labeled data in controlled settings,
there is no alternative source of streaming interaction data
to validate the inferred networks in our subject pool. We
then examine whether the inferred conversation networks
correspond to meaningful social relations from the survey—
subjects’ self-reports of their collaboration on research or
homework with peers. Indeed, the agreement between each
month’s conversation graph and the collaboration graph
ranges from 61.6% to 82.2% and the aggregate agreement
across all months is 71.3%. To put the sensor-to-survey
comparisons in perspective, we also considered the expected
agreement between random graphs (with same density as
the survey graphs) and the survey graphs. For individual
months, the difference in survey agreement between the con-
versation graph and random ranged from 2.1% (p = .304)
to 13.9% (p = 1.1 × 10−4). When all months are aggre-
gated, the conversation graph agrees with the survey graph
7.1% (p = 6.0 × 10−6) better than random. A full com-
parison for all months can be found in [14]. Adding a small
threshold (requiring a pair to talk for a minimum amount of
time) makes the difference in agreement between the random
graph and the conversation graph much greater—so these
comparisons are conservative.

Beyond aggregate network views
A key advantage of using ubiquitous sensing and inference
tools to collect social network data is that they allow us to get
not just a snapshot of the network, but also detailed records
of how people interact with each other. Further, by contin-
uously observing a group over an extended period of time,

Table 1. Correlation between change in speech features and tie strength
Rate Pitch Turn Length Turn Frequency

r p r p r p r p

-.233 1.7E-9 -.138 .0001 -.118 .0008 -.068 .0525

we can explore the relations between local behaviors and the
global structure of the group. We present two such prelimi-
nary findings here.

Correlation between speaking style and strength of ties
The first hypothesis is that individuals change their speaking
style less when interacting in their strong ties, i.e., with peo-
ple they interact with often. This is based on the assumption
that people’s normal behavior is defined more by regular in-
teraction partners than by rare partners.

To test this hypothesis, we estimate the proportion of mutu-
ally monitored time that persons i and j spend in conversa-
tion. We use two-party conversations only to ensure that any
partner-dependent variation in speaking style is due to only
one interlocutor.

We measure four features of subjects’ speaking style: (i)
rate, (ii) pitch, (iii) turn length, and (iv) turn frequency. To
observe changes in person i’s speaking style we estimate 3
quantities from the data. (1) bi\j : the mean of i’s speech
feature b when speaking with everyone except person j, (2)
bi→j : the mean of i’s speech feature b when speaking with
j, and (3) si: the standard deviation of i’s speech feature re-
gardless of the interlocutor. We define dij , |bi\j−bi→j |/si

to be the amount that i’s speech feature changes when in con-
versation with j. We then compute the correlation between
cij , the proportion of time that i and j spend in conversa-
tion, and dij for the four speech features described above.
Correlations are computed across all months by aggregating
samples into one data set, and all correlations are conditional
on cij > 0 since we can only estimate bij for pairs that spend
some time in conversation.

We hypothesize a negative correlation: the more two people
talk to each other, the less they change their speaking style.
Table 1 shows that results support our hypothesis.

Correlation between speaking style and network centrality
The second hypothesis tested is whether individuals change
their speaking style more when interacting with people who
are more central to the network. For each person i, we com-
pute his mean incoming change: the mean of dki for all k
who speak to i. The higher this incoming mean, the more
people change their speaking style when with person i.

We compute each person’s centrality using a variant of close-
ness centrality [12], modified to take advantage of our con-
tinuous measure of the strength of social ties. We regard the
‘length’ of an edge i–j as 1 − cij (or the proportion of time
that they do not spend in conversation) if cij > 0; if i and
j do not converse at all, their edge is null and its length is
undefined. We define the length of a path i–j as the sum



Table 2. Correlation between change in speech features and centrality
Rate Pitch Turn Length Turn Frequency

r p r p r p r p

.307 .0003 .228 .0075 .164 .0558 -.0413 .6334

of all edge lengths along the shortest path between them.
Given that each interaction graph includes one large con-
nected component (along with, in some cases, isolated nodes
with no incident edges), we compute centrality as the multi-
plicative inverse of the mean path length from a person to all
others in the component. Individuals who are connected to
others by short and strong paths are more central, and have
higher closeness scores. We hypothesize that more central
people will have higher incoming change.

We compute the correlation between a person’s mean incom-
ing change and her closeness centrality, aggregated across all
months. Isolated nodes are excluded, since having no con-
versations also means having no behavioral data to consider.

We do observe a positive correlation between incoming
change and closeness centrality for all speech features ex-
cept turn frequency, which does not appear to be correlated
with centrality (Table 2).

OTHER POTENTIAL APPLICATIONS
The two results presented in this paper demonstrate the
use of ubiquitous computing technologies to make scien-
tific queries about individual and group behavior. But the
role of ubiquitous computing is not limited to data collection
and basic research. The sociological insights gained through
such inquiry can be used to enhance new ubiquitous com-
puting applications.

One key piece of information needed by context-aware ap-
plications is knowledge of who the user is with [11]. We
believe that additional information about a person’s relation-
ship to those whom she is with—beyond simply knowing
their identities—will provide additional benefits. For ex-
ample, whether an individual is engaged in a conversation
is a moderately useful predictor of user interruptibility [5].
Knowledge of the tone of the conversation or the relation-
ship between conversants may improve a system’s ability to
predict interruptibility.

Since the speech processing techniques we employ could
theoretically run on almost any current cell phone, it is also
possible for a cell phone to learn its user’s conversational
styles and use differences in speaking style to categorize the
people to whom she speaks (assuming speakers are identi-
fiable). Such categorization could subsequently be used to
prioritize incoming calls or messages.

The two results presented in this paper suggest a relation-
ship between the speaking styles of a conversation’s partic-
ipants and both the strength of the tie between the speakers
and the position of the speakers within their larger social
network. Ultimately, it may be possible to perform an auto-

mated social analysis of conversation data so that an appli-
cation can infer the relationship between speakers. Clearly,
further studies into conversational style and social relation-
ships are needed beyond the limited one that we have pre-
sented here, but we have demonstrated a new direction for
both the application and advancement of ubiquitous com-
puting.
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